DL 6 pour le jeudi 30 janvier 2025

INTENSITÉ SONORE

La puissance sonore instantanée $\mathscr{P}(x,t)$ transportée par l'onde plane progressive à travers une surface $\vec{S} = S \vec{e}_x$ orthogonale à la direction de propagation \vec{e}_x , est définie par : $\mathscr{P}(x,t) = \vec{\pi}(x,t) \cdot \vec{S}$, où $\vec{\pi}(x,t)$ est le vecteur densité volumique de courant d'énergie ou puissance surfacique transportée : $\vec{\pi}(x,t) = p(x,t)\vec{v}(x,t)$.

L'intensité I(x) de l'onde sonore est, par définition, la valeur de la puissance moyenne temporelle transférée par l'onde sonore à travers une surface unité d'abscisse x perpendiculaire à sa direction de propagation $Ox: I(x) = \langle \pi \rangle$.

▶ Si a (M,t) et b (M,t) sont deux fonctions sinusoïdales de même pulsation, \underline{a} et \underline{b} leurs représentations complexes associées, alors la valeur moyenne temporelle, notée < a.b >, du produit a(M,t).b(M,t), est obtenue par la relation :

$$< a.b> = \frac{1}{2} \Re e \Big[\underline{a} \underline{b}^{\star} \Big] = \frac{1}{2} \Re e \Big[\underline{a}^{\star} \underline{b} \Big]$$
, et en particulier $< a^{2}> = \frac{1}{2} |\underline{a}|^{2}$. $|\underline{a}| = \sqrt{\underline{a}} \underline{a}^{\star}$ est le module de la grandeur complexe \underline{a} .

Le domaine de fréquences accessibles à l'oreille humaine s'étend de 20 Hz à environ 20 kHz. A une fréquence de 1 kHz, l'oreille est capable de percevoir un son dont la densité de courant énergétique vaut $10^{-12}W.m^{-2}$ et la perception devient douloureuse à $1W.m^{-2}$. Vu l'énorme différence d'ordre de grandeur entre ces valeurs extrêmes, une échelle logarithmique s'impose. Le seuil de perception $I_0 = 10^{-12}W.m^{-2}$ est pris comme référence et, à une densité de courant énergétique I (en $W.m^{-2}$), est associée une intensité sonore en décibel définie par :

$$I_{dB} = 10 \log \left(\frac{I}{I_0} \right)$$
.

L'émetteur, en x=0, génère une vibration sinusoïdale de pulsation ω de la forme : $u\left(0,t\right)=U_{m}\cos\left(\omega t\right)$.

 U_m représente l'amplitude du déplacement. L'onde plane progressive qui se propage le long du tuyau supposé infini selon la direction Ox est représentée par :

- en notation réelle : $u(x,t) = U_m \cos(\omega t kx)$,
- en notation complexe : $\underline{u}(x,t) = U_m \exp[j(\omega t kx)].$
- <u>C2.</u> Quelle est l'expression de l'intensité acoustique $I = \langle \pi \rangle$ pour l'onde plane progressive harmonique en fonction de P_m et de l'impédance caractéristique du fluide Z?

- <u>C3.</u> Exprimer la puissance moyenne $\langle \mathscr{P} \rangle$ transportée à travers une conduite de section constante S_0 , en fonction de P_m et de l'impédance acoustique de la conduite Z_a .

	I (en W.m ⁻²)	I (en dB)	P _m (en Pa)	V _m (en m.s ⁻¹)	U _m (en m)
seuil de perception	10 ⁻¹²	0	3.10 ⁻⁵	$0,7.10^{-7}$	10 ⁻¹¹
seuil de douleur	1	120	30	$0,7.10^{-1}$	10^{-5}

Justifier « l'approximation acoustique ». Commenter succinctement la sensibilité de l'oreille et son domaine d'audition.

<u>C5.</u> Quelle est, en décibels, l'intensité sonore résultant de la superposition de deux ondes sonores émises par deux sources indépendantes d'intensité 60 dB? Donnée : $log 2 \approx 0,3$.

REFLEXION ET TRANSMISSION EN INCIDENCE NORMALE

D / TUYAU SONORE: INFLUENCES DES FLUIDES ET D'UN RACCORDEMENT

Une conduite est constituée de deux tubes cylindriques de sections respectives S_1 et S_2 , de même axe x'x et séparés par le plan x=0. Deux fluides non miscibles se répartissent de part et d'autre de ce plan (figure 2).

- \triangleright x < 0 : le fluide **1** est de masse volumique μ_1 ; le son s'y propage à la célérité C_1 ;
- \triangleright x > 0 : le fluide **2** est de masse volumique μ_2 ; le son s'y propage à la célérité C_2 .

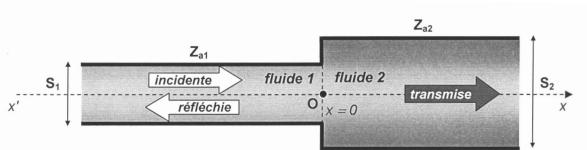


Figure 2

Les impédances acoustiques Z_{a1} et Z_{a2} des tubes de sections respectives S_1 et S_2 sont liées aux impédances caractéristiques Z_1 et Z_2 des milieux par les relations :

Une onde de pression plane progressive harmonique incidente $p_i(x,t)$ se propage dans le milieu **1** selon le sens des x croissants. La discontinuité de l'impédance au niveau du raccordement donne naissance en x=0 à :

- \triangleright une onde de pression transmise dans le milieu **2**, $p_t(0,t)$ dont la puissance est \mathscr{P}_t ,
- \triangleright une onde de pression réfléchie dans le milieu **1**, p_r (0,t) dont la puissance est \mathscr{P}_r .

Les pressions acoustiques incidente, transmise et réfléchie s'expriment par :

$$p_{i}(x,t) = P_{im} \cos \left[\omega \left(t - \frac{x}{C_{1}}\right)\right] \qquad p_{t}(x,t) = P_{tm} \cos \left[\omega \left(t - \frac{x}{C_{2}}\right)\right] \qquad p_{r}(x,t) = P_{rm} \cos \left[\omega \left(t + \frac{x}{C_{1}}\right)\right]$$

La puissance moyenne $\langle \mathcal{P}_i \rangle$ est associée à l'onde incidente. Les coefficients de réflexion R et de transmission T en puissance sont définis par les valeurs absolues des rapports des puissances moyennes transportées :

$$R = \left| \frac{\langle \mathscr{P}_r \rangle}{\langle \mathscr{P}_l \rangle} \right| \quad \text{et} \quad T = \left| \frac{\langle \mathscr{P}_t \rangle}{\langle \mathscr{P}_l \rangle} \right|.$$

- <u>D3.</u> Enoncer, en les justifiant, les conditions de passage de l'onde à l'interface des deux fluides. En déduire deux équations reliant P_{im} , P_{rm} , P_{tm} et α .
- <u>D5.</u> Exprimer les coefficients de réflexion R et de transmission T en puissance à travers l'interface en fonction du seul coefficient α .

 Quelle relation existe-t-il entre R et T ? Que traduit-elle ?

Influence des deux milieux pour une conduite de section constante : $S_1 = S_2 = S_0$

La discontinuité de l'impédance au niveau du raccordement est liée à la différence de nature entre les deux fluides.

D6. Le milieu 2 est l'air, d'impédance caractéristique Z_{air2} et le milieu 1 l'intérieur du corps humain dont les constituants sont caractérisés par une impédance caractéristique $Z_{corps1} \gg Z_{air2}$. Evaluer r_P et t_P , puis T et R. Commenter. Calculer l'atténuation en décibel $T_{dB} = 10 \log(T)$, correspondant au coefficient de transmission $T = 1,7.10^{-3}$. Pourquoi le médecin utilise-t-il un stéthoscope pour écouter les battements cardiaques ou les murmures respiratoires ? *Donnée : log 17 ≈ 1,2*.

Influence du raccordement des deux conduites pour un fluide unique : $\alpha = S_2/S_1$

Un fluide de masse volumique au repos μ_0 dans lequel le son se propage à la célérité C occupe la conduite constituée des deux tubes de sections différentes S_1 et S_2 . La discontinuité de l'impédance au niveau du raccordement est représentée par le changement de section.

<u>D7.</u> Tracer l'allure de la fonction $R(\alpha)$. Pour quelle valeur de α , y a-t-il adaptation de l'impédance ? Commenter les cas limites : $S_2 \ll S_1$ et $S_2 \gg S_1$.