
Devoir en temps libre n°2

1. Etude d'un montage à ALI

- 1. 1 Préalablement à l'étude en régime forcé sinusoïdal, on cherche à étudier la stabilité du circuit. Ecrire l'équation différentielle associée à ce montage. Discuter de la stabilité des solutions.
- $1.\ 2$ On soumet le circuit à un échelon pour v_e la tension imposée en E :

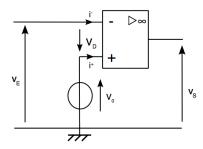
$$v_e(t) = 0 \text{ pour } t < 0$$

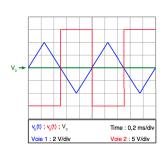
$$v_e(t) = E = cste \text{ pour } t > 0$$

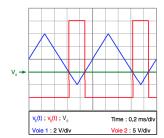
On cherche des solutions sous la forme $v_s(t) = ae^{pt}$, pour v_s la tension mesurée aux bornes de R_u . En déduire la forme des solutions p_i .

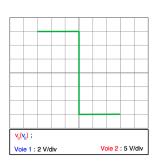
- 1. 3 expliquer ce qu'implique le fait de considérer qu'un ALI est idéal et en régime linéaire
- 1. 4 montrer que le courant passant dans C_1 est le même que celui passant dans R.
- 1. 5 Par une loi des noeuds, en notant A le noeud entre les deux résistances R, montrer que la relation entre v_e, v_A et v_s est :

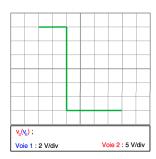
$$\int jRC_1\omega v_e + v_A = v_s(1 + j\omega RC_1)$$


- 1. 6 appliquer une loi des noeuds en A et en déduire une relation entre v_A et v_s
- 1. 7 en déduire que la fonction de transfert peut s'écrire


$$H = \frac{v_s}{v_e} = \frac{j\tau_1\omega(2 + j\omega\tau_2)}{1 + 2j\omega\tau_1 - \tau_1\tau_2\omega^2}$$


- 1. 8 étudier le comportement fréquentiel de H pour $\omega \to 0$ et $\omega \to \infty$
- 1. 9 faire l'étude asymptotique du diagramme de Bode de ce filtre
- 1. 10 quelle est la nature du filtre réalisé?
- 1. 11 Commenter le fait que la tension v_s est indépendante de R_u


2. Montage à saturation


Etablir à quel cas correspond chacune des formes des signaux ci-dessous enregistrés sur l'écran de l'oscilloscope.

3. Réactions de complexation

Le fluorure d'hydrogène est une molécule polaire, donc très soluble dans les solvants polaires et dans l'eau en particulier. Les applications du fluorure d'hydrogène sont très nombreuses : précurseur de la synthèse de nombreux composés dans l'industrie pharmaceutique et de la fabrication de divers polymères (PTFE notamment).

- 3. 1 Ecrire l'équilibre acide base selon Brønsted de HF. La constante d'acidité associée à cet équilibre est notée $K_1 = 10^{-3,18}$.
- 3. 2 Les solutions aqueuses d'acide fluorhydrique contiennent aussi (comme les milieux fondus de type KF, 2HF) l'ion hydrogénodifluorure HF_2^- qui résulte de l'équilibre suivant :

$$F^- + HF = HF_2^ K_2 = 10^{0.67}$$

Exprimer la concentration molaire C_F en élément fluor de la solution aqueuse, en fonction des concentrations molaires [HF], [F⁻]et [HF₂⁻].

3. 3 Calculer le pH et la valeur de la concentration C_F lorsque 2 $[F^-] = [HF^-]$. On négligera l'autoprotolyse de l'eau et on vérifiera les hypothèses posées.

L'ion fer (III) forme avec l'ion fluorure quatre complexes successifs FeF_x^{n-} tel que x=1,2,3 et 4. Les constantes globales de formation β_x associées aux quatre complexes formés sont définies telles que :

$$\beta_1 = 10^{6,0}; \beta_2 = 10^{10,7}; \beta_3 = 10^{13,7}; \beta_4 = 10^{16,1}$$

- 3. 4 Calculer les constantes successives de dissociation de ces complexes.
- 3. 5 Tracer le diagramme de prédominance des complexes en fonction de $pF = -\log [F^-]$.
- 3. 6 On considère une solution aqueuse constituée de sulfate de fer (III) de fluorure de potassium. Déterminer l'espèce majoritaire dans cette solution pour les conditions expérimentales suivantes :

$$\begin{aligned} pF &= 5, 3 \\ \left[\begin{array}{c} F^{-} \end{array} \right] &= 9.10^{-4} \text{ mol } L^{-1} \end{aligned}$$

3. 7 Pour pF = 5, 3, estimez la quantité de Fe^{3+} dans la solution